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Abstract. This anicle contains the theoretical study of a weak, slowly oscillating electric field 
across a wedge of non-chid smectic C liquid crysl%. Smectic C continuum theory is used to 
den've the goveming equations. By use of the method due to Melnikov these equations are then 
examined for the possibility of exhibiting chaotic solutions. The results are discussed in relation 
to possible experimental observations and material constants 

1. Introduction 

Liquid crystals consist of elongated molecules which have a local preferred direction. 
Smectic C liquid crystals are layered srmctures in which the average long molecular axis 
lies tilted at an angle 0 to the layer normal. This tilt angle is dependent upon the temperature 
of the system which, for our purposes, is assumed constant. Apart from possessing 
geometric anisotropy the constituent molecules are also dielectrically anisotropic. Under 
the application of an external electric field this may cause the molecules to rotate within 
the layers; applications of strong electric fields may lead to layer distortions. 

It is common in liquid crystal theory to describe the average direction of the long 
molecular axis within a sample by a unit vector n, usually called the director. Following 
the description by de Gennes [ l ]  we employ two unit vectors to describe a smectic C. 
The orientation of the parallel smectic layers is described by the unit layer normal a. The 
second unit vector c which is perpendicular to a (and therefore tangential to the layers) is 
the unit orthogonal projection of the n-director onto the smectic planes. Mathematically it 
is convenient to introduce a third vector b as 

b = a x c .  (1) 

These vectors are often called the U - ,  c- and b-directors. To describe the c- and b-directors it 
is convenient to introduce q5 as the angle that the c-director makes with some fixed direction 
within the plane of the layers. 

In the absence of any defects, the unit layer normal fulfils the following constraint, due 
to Oseen [Z], 

V x a = O .  (2) 
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Figure 1. The smectic planes as parts 
of concentric cylinders with their common 
axes coinciding with the apex of the wedge. 
shown with the cylindrical polar coordinate 
system. The electric field E is applied 
across the bounding plates at e = 3s) and 
follows the curve of the smectic planes. 

This has been known to restrict the possible layer configurations to planes, cylinders, spheres, 
circular tori, Dupin cyclides and parabolic cyclides 131. 

It is assumed throughout this work that the smectic layers remain intact as parts of 
concentric cylinders and that there is no bulk flow in the sample. Consequently the only 
motion occurs in rotations of the molecules within the layered structure. In a cylindrical 
coordinate system (r .  U, z )  we employ the geometry used by Carlsson el al [4] and form a 
wedge of liquid crystal by placing boundaries at IY = f q ,  applying the voltage across these. 
The apex of the wedge is such that it coincides with the centres of the concentric cylinders 
and the z-axis of the cylindrical polar coordinate system, as depicted in figure 1. Thus we 
may set 

a = (1,0,0) 

c = (0, sin@, cos@) 

b =  (0, -cos@,sin@) 

as our ansatz for the three directors. 

(3) 

We consider a weak, slowly oscillating potential difference across the plates: 

V( l )  = UJiJcos(or) (4) 

vo = U&. ( 5 )  

where the angular frequency o is small and the maximum potential difference is 

This gives rise to an electric field of the form 

This particular form for an oscillatory field has been chosen for reasons which will be 
discussed in section 4. 

In section 2 we employ the smectic C continuum theory of Leslie et a1 [3]  to derive 
the differential equation governing the motion of twist walls in the sample. In section 3 
we introduce and use Melnikov's method to examine this equation for chaotic behaviour. 
Thk approach has recently been successfully used by Stewart et al 151 in the study of a 
static field attenuated by a weak, slowly oscillating field applied at a small angle to the 
layers of a planar-aligned sample of smectic C liquid crystal. As discussed in [5 ] ,  a twist 
wall (or travelling wave) will propagate through the system, driven by elastic and dielectric 
torques. The original twist is formed by competing boundary condititions. The twist will 
prefer to travel such that the c-director aligns with the direction which minimizes the energy 
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of the system. For a full discussion of the effects of competing torques on travelling wave 
solutions the reader is referred to [SI. 

The aim of this article is to examine the possibility of the application of a field of the 
given type resulting in chaotic motion of the twist walls within the sample. Since our interest 
lies in the existence of chaos at a local level it is sufficient to examine small sections of the 
sample separately. By exploiting this fact in section 2 the equations are greatly simplified, 

2. Continuum equations 

In terms of a and c, the relevant continuum equations are given by Leslie ef al [3] to be 

+ij" + h a +  pc+ v x p = 0 (7) 

(8) 

this coupled system representing the conservation of angular momentum. We shall refer 
to these equations as the a- and c-equations respectively. The terms I Ia  and IIc are bulk 
elastic and dieletric terms. The dynamic terms 8" and are related to the intrinsic viscous 
torque of the system as discussed by Leslie ef a1 [3]. It will be seen later that II' and 9 
need not be calculated explicitly. The forms of IIc and 4' are given in the appendix. The 
Lagrange multipliers 0, A ,  x and j~ arise from the constraints (2) and 

a . a = l  (9) 

c . c =  1 (10) 

a . c = O  (11) 

II' +ij" + pa + xc  = 0 

respectively. 
Taking the scalar product of the c-equations (8) with a gives 

(12) = -nc - 
I I '  

This makes the first component of the e-equations trivially satisfied. The Lagrange multiplier 
x can then be eliminated between the second and third c-equations, leaving just 

(n ;+H;)cos#- (n ;+g; )s inO = O .  (13) 
In common with earlier work on smectics (for example [6 ] )  we can use equation (12) 

and take the divergence of the resulting a-equations (7) to gain a PDE which h must solve, 
namely 
a a a 

- ( r ( n ; + A + g g ) ) +  - (n ;+ jLs in#+H; ) t  - ( r ( n ; + p c o s @ + 9 ; ) )  = O .  (14) 
ar aa az 
This obviously has solutions for 1 in terms of # by integration with respect to r .  The 
existence of the vector Lagrange multiplier p, such that the a-equations can be solved 
completely is then guaranteed by the following identity for any twice-differentiable vector 
F: 

V . F = 0 if and only if F = V x G (15) 

for some unique (to within the gradient of an arbitrary scalar field) vector G. By writing 
F = II' + ha + pc, the value of h derived at equation (14) ensures that V . F = 0 and so, 
by setting p = -G in the above equation, the a-equations are solved completely for any 
given +. Thus solving equation (13) completely solves the coupled system (7) and (8). 
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Noting that the geometry has translational invariance in z we make the assumption that 
6 is independent of z .  Furthermore, since we are seeking the existence of chaos within 
but not necessarily throughout the sample, we may take a local approach. We do this by 
considering a thin, curved strip of liquid crystal such that r may be considered constant. 
Thus we have 

6 = $(a, 0. (16) 
We now proceed to calculate equation (13) from the expressions (A.5), (A.7) and (A.8) 

in the appendix. Doing so yields 

= O  (17) 
B 8% a u  
2 auz a t  
_ _  + A sin u cos u - As r z  - + ft. to sin2@ sin u 

where we have set 

U = 2@ (18) 

and A is the combination of elastic constants given by (A.3). 

seek solutions of the form 
Motivated by previous analyses of twist wall solutions (see, for example, [5] or [7]) we 

U = u(5) (1% 
where 

and a0 is a fixed value of a. If we further restrict our attention to a neighbourhood of a0 
such that 

v! -(a - ao)hsr2 = O(W) (21) 

then by writing 
du 
d7  

U = -  

and 

equation (17) becomes, in abstract form, 

by use of equations (17) to (21) and the formula for cos@ + b ) .  Notably the simplification 
(20) complicates the inclusion of boundary conditions at a = &q. We overcome this by 
limiting ourselves to areas of the sample (described by r ,  and equation (21)) where 
uo(0r, t )  = 0 holds at some time t. We can then redefine time in each such region such 
that it is possible to set ~ " ( 0 )  = 0 without loss of generality. In doing this we'are able to 
neglect any boundary conditions. In the presence of certain types of boundary conditions it 
is likely that there would be regions in the sample in which u"(a, t )  remains non-zero for 
all 2. To include such areas in our analysis would cause unnecessary complication. 
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3. The existence of chaotic twist wall motion 

In this section we shall describe and use the Melnikov method for proving the existence of 
chaotic solutions. For further details of this method the reader is referred to IS], [9 ] ,  [lo] 
or [ 111. To clarify notation we shall rewrite equation (24) as 

dx - = f (2) + o g ( z ,  r ,  U )  + 0(o2) d r  (25) 

where z = (U, U) and f and g are defined in an obvious manner. To apply the Melnikov 
method we first note. that the unperturbed system (o = 0) 

U '( d r  1 ) = (  -Asinucosu)  

is Hamiltonian. The Hamiltonian H ( u ,  U) is constant as the system is conservative and is 
defined by 

(27) 
2 2H = U' - A COS U 

since a" = U and -% = -A sin U cos U. Rearranging the above gives 

(g)' = 2 H + A c o s 2 u  

By equation (A.4) we note that A > 0, in which case two different types of behaviour can 
be seen to exist: when H < 0, U is not defined for all U. since u2 is negative for some U and 
the c-director is oscillating. For H > 0, U is defined for all U, since U' is always positive 
and the c-director is rotating. The seperatrix between these types of behaviour, H = 0, 
describes the homoclinic behaviour. It is with the homoclinic solution that the Melnikov 
method is concerned. By rewriting (28) with H = 0 we gain the following expression for 
the homoclinic solution: 

(29) 

With the simplification uo(0) = 0, this may be integrated from 0 to r to yield the upper 
and lower seperatrices in the phase plane 

( u i ( r ) ,  u i ( r ) )  = (k:in-'(tanh(&r)). ?&sech(&r)) . 

2 0  = A  COS U . 

(30) 

For both branches of the above solution we define the Melnikov function as 

where f ~g = fig2 - ha. 
For a system of the form (25) for which the unperturbed equation is Hamiltonian and 

possesses homoclinic (or heteroclinic) solutions to one (or more) hyperbolic saddle points, 
Melnikov's theorem may be stated as follows. 

Melnikov's Theorem. If M+(ro) or M-(ro) has simple zeros and is independent of w, then 
f o r o  > 0 sufficiently small the perturbed system (25) exhibits chaos (in the sense of Smale 
Horseshoes). 
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Thus, the existence of chaos is guaranteed by the presence of values 5 of TO such that 

M ( 5 )  = 0 (32)  

and 

Before applying the Melnikov theorem, it is first necessary to calculate the Melnikov 
function for both branches of the homoclinic solution. By equations (24) and (31) and 
noting that U! sin U! = U! sin U: 

M*(ZO) = [p(U:(r))’ - uu0,(r)sinu0,(r)cosZ(hSr2(r + r0))dr  
m 

= I ,  - u l z .  

By (29), with H = 0, 

I ,  = . h i ~ x 1 2 ~ o s u d u  X I 2  

= Z f i .  (35) 
Expanding the squared cosine term in 11 and noting that by (30), u$(r)sinu:(r) is odd in 
r ,  gives 

I2 = -J;isin(2hsrZro) sech ( .h i r ) tanh(~r ) s in (2hsr2r )dr  1- 
= - sin(2X&o){ [- sech(.hir)  si11(2hsrZr)]~ 0 

I +2hsr2 Jdmcos(2A5rzr) sech(.hir) d r  

the final integrand being evaluated via an expression given in [U, p 5031. Therefore 

(34) 

The form of the above Melnikov function makes application of the Melnikov theorem 
particularly simple. Obviously simple zeros and therefore chaos in the sense of Smale 
horseshoes exist whenever 
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4. Discussion 

The above Melnikov analysis demonstrates that chaos exists within the sample whenever 
the following holds: 

where 

In these equations the variables of interest physically are R and c. R is a measure of distance 
from the apex of the wedge and by reference to (23) the gradient, c, of hz(R)  varies with the 
applied voltage; c increases from zero when the peak applied voltage increases from zero. 
From figure 2 it is apparent that for a low applied volrage (and therefore low gradient c) 
hz(R) will not intersect h l (R)  with the consequence that chaotic behaviour is not present. 
At a critical value of the peak applied voltage (V,) hz(R)  becomes tangential to h l (R)  at a 
point R. For a peak applied voltage above this critical value the gradient of h2(R) increases 
similarly ensuring that h l (R)  and hz(R) intersect at two points 

Ro - 

and 

(44) 

Between these two points our Melnikov analysis dictates that chaos exists. 
To determine the critical peak applied voltage we first find the value ci of the gradient 

of h2(R)  such that h l (R)  is tangential to h l ( R ) ,  this in turn will lead directly to the critical 

Figure 2 Qualitative plots of h l (R)  and 
h2(R) for peak voltages VU below, equal 
lo. and above the critical voltage V,. For 
Vo > V, chaotic insrabilities occur for values 
of R between RO and R I .  
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peak applied voltage V,. In order to do this we note that by simple differentiation the value 
of R which gives the minimum distance between h, (R)  and hz(R)  is 

P J Kedney and 1 W Stewart 

R' = sinh-' c . 
Therefore cr is the value of c such that j ( c )  
following expression for cI: 

(46) 
hl(R')  - hl(R') is zero. This gives the 

j ( c , )  = cosh(sinh-l ct) - c, sinh-' cr 

= ,/cy + 1 - c, sinh-' c, = 0. 
We solve this by use of an iteration of the form 

(47) 

to find that 

' cy = 1.508 80. (49) 
Hence for values of the peak applied voltage V, that force c above 1.508 80 we have chaotic 
behaviour. By (3, (23), (43) and (49) we gain the critical voltage above which chaos occurs 
as 

As can be visualized from figure 2 the resultant chaos exists whenever R lies between 
RO and R I  which are related to the distance from the apex of the wedge by (44) and 
(45). The chaotic region lies within a band in the sample which grows as the peak voltage 
is increased above V,. Such chaotic regions may represent areas of unpredictable and 
non-repeating twist wall motion in the sample. Hence we envisage that by experimental 
observation of the boundaries of the chaotic region with respect to r along with knowledge 
of the value of A (possibly gained from (SO)), it may be feasible by numerical investigation 
of (39) to gain a value for the viscosity coefficient As. However, due to the simplification 
made to derive equation (30), which in turn made the calculations more tractable, we have 
no method of predicting the boundaries of the chaotic region with respect to CY. Indeed it  
is entirely possible that the chaotic region tapers towards either limit in r ,  especially the 
lower limit due to the narrowness of the wedge. In this case experimental values of ro and 
r l  may be difficult to obtain to a reasonable accuracy. Thus it is hoped that by careful 
experimental observation values for Vc and As could be determined. 

Finally we shall mention the assumed form of the electric field. The oscillatory part is 
quite straightforward; however, the peak applied voltage is linked to the angular frequency. 
This of course does not pose any particular problems although it may seem unusual and 
places a restriction on the strength of the applied field: a large peak applied voltage could 
affect the resulting analysis. For a high-voltage experiment we note that any resultant layer 
distortions would negate this analysis as we have assumed that the layers remain intact; this 
point aside, the form of a strong voltage would be better represented by 

V ( t )  = v cos(wt) (51) 
than by (6) .  At first glance one may expect the analysis resulting from equation (51) to 
follow the lines of those by Wiggins [I31 or Hastings and McLeod [14]. These articles are 
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concerned with the motion of a forced pendulum but unlike previous Melnikov analyses of 
this problem, the amplitude of the forcing term is  not necessarily small. This appears to be 
similar to replacing equation (6) with (5 1) in our problem. However, with this modification 
the manipulations we employ between equations (17) and (24) give a system which cannot 
be brought into a suitable form to apply the extension to Melnikov's theory as proposed 
by Wiggins [13]. Hence our present analysis is inappropriate for strong fields of the above 
form although the evidence suggests that chaos would indeed exist. 

Appendix 

The value of IIc is defined by Leslie er al [SI as 

where w is the bulk energy of the system. In terms of a and c and their gradients we 
adopt a simplified form of the energy proposed by Leslie et al 1151 and assume a uniaxial 
dielectric response [ I ]  to give 

2w = A z l ( V .  a)'+ B((a.  V X c)' + (V . C) ' )  

+B3{ (b .  V x c)' + (c . V x c)' - (V . a)(b .  V x c) )  

+2A{(b.V x Q 2 - ( V . a ) ( b . V  X C ) )  

-2BI3((a.  V x c) (c .  V x c) + ( V .  c ) (b .  V x c ) )  

+2(Cl + CZ)(V .  c)(b.  V x c)  - 2Cz(V. a)(V - c) 

-$"q(a . EcosO + c . Esin 6))'. 

d@ 
= '(41 r2 + B (2)' -2As inZ@ c o s 2 @ + 2 ( C ~  +C2)cos@ sinZ@- dor 

(A.2) 

Here O is the constant smectic C tilt angle mentioned in the introduction. A term in 
the electrical energy which is independent of orientation (and hence does not occur later) 
has been ignored. The constants €0 and represent the permittivity of free space and the 
dielectric anisotropy of the liquid crystal (the difference in relative permittivities parallel and 
perpendicular to the n-director) respectively. The anisotropy can be positive or negative, 
depending upon the specific liquid crystal in question. The A, B and C parameters are 
elastic constants where in the notation of Leslie et al [ 151 we have set 

d@ 
dor 

-2c2cos@- - E ~ E , E ~ S ~ ~ ~ O  sin2@ 

51 = Bz = B A I I  + AI* = A I I  + A ~ I  = A .  L4.3) 

The elastic constants appearing here are the same as those introduced by the Orsay 
Group [16] except that All = - $ A Y  and CI = -Cl . A brief physical interpretation 
of the deformations related to each of the elastic constants has been given by Carlsson er 
al [4], from whose work it can also be seen that 

B z O  and A > O .  (A.4) 

omy 
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The general form of 
reduces this contribution to 

is given in [3]; however, our assumed absence of bulk flow 

where h~ is a positive viscosity coefficient [3]. 

following expression which can be verified (for further details see [ 171): 
For the evaluation of llc the non-negative components of the energy give rise to the 

nc = BV((V.  e) - v x ( ( a .  v x c)a)] 

+ Z A ( ( ~ . V X C ) ( U X V X C ) - V X ( ( ~ . V X C ) ~ ) ) + V X ( ( V . U ) ~ )  

- (V.  a)[a x v x e)] 

+(C, + C ~ ) ( V ( ~ . V X C ) - V X ( ( V . C ) ~ ) + ( V . C ) ( U X V  X C ) )  

-CzV(V. a)  + 6.6o(a.EcosB 3- c .  E s i n Q E s i n B .  (A.6) 
From this we may calculate the required second and third components of ITc via the ansatz 
(3) as 

ng = r B (  - sin @(: jz + (A.7) 
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